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Block ciphers
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Block ciphers as family of permutations

Block ciphers é

A block cipher defines a map

E:PxK—-C =
that takes plaintexts and keys to ciphertexts.
H— K
F
D— K
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Block ciphers as family of permutations

occpres WA
— N

A block cipher defines a map
E:PxK—=C
that takes plaintexts and keys to ciphertexts.

P
I
x

Set of permutations

O fixing a key K € K defines a permutation =
gK P —C
@ fixing all keys defines a set D— K,

E= {50, 51, 500 ,qu_l}
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Is the block cipher sufficiently generic ?

Distinguishers and property testing

Is there a property that distinguishes one or a class of few from the
many ?
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Distinguisher to key recovery

g[( 7 ~ ’D%"—r) l——

e distinguisher for r out of n rounds of the cipher
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Distinguisher to key recovery

e distinguisher for r out of n rounds of the cipher

@ guess enough key bytes in decryption direction
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Distinguisher to key recovery

e distinguisher for r out of n rounds of the cipher
@ guess enough key bytes in decryption direction

o verify key guess in the middle using distinguisher



Subspace attacks
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Subspace cryptanalysis

Basic exploitation

Plaintexts or ciphertexts stay inside linear and affine subspaces for
many rounds (form of truncated differentials)

Brief overview

@ A Cryptanalysis of PRINTcipher: The Invariant Subspace
Attack(CRYPTO'11)

@ A Generic Approach to Invariant Subspace Attacks:
Cryptanalysis of Robin, iSCREAM and Zorro, (EC'15)

@ Subspace Trail Cryptanalysis and its Applications to AES (FSE
'17)

@ related to superbox cryptanalysis and truncated differentials

@ ...active research area
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notation

F" is n-dimensional space over field F

let V be a subspace of F"

Let F be a function on F” (a permutation)
S=FV)={F(v),|veV}

cosets : V@ a={vdalve V}for VCEF"
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Invariant subspace attacks

o— F | —o—

Vda Vaéb

Consider a permutation formed by iterating a permutation F xored
with a fixed round key K. Assume the round function maps a
coset V @ atoacoset V@b
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Invariant subspace attacks

Ke(adb)oV

.4F—.—é—.

V&a V@b V&a

...and that the fixed round key K isin V & (a @ b). J
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Invariant subspace attacks

o—— F —eo &4 ® F l—e—

V®da Vaob V@da Vab

Then this process repeats itself.
Plaintexts in coset V @ a are mapped to itself
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Invariant subspace attacks

Ke(a@b)oV
o F—eo—(—o Ft—e—
V®a V@b V©a Vaoob

Confidentiality is broken: Density of weak keys =2"—dim(V) J
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A Cryptanalysis of PRINTcipher: The Invariant Subspace

Attack, [Leander+]

L 11 Hw_lkH 1 Y B T 1} JH‘

e

@ block size n = 48

@ Fixed key K in each round
(used for key-dependent p
and XOR)

@ Round constant

. o Finds 252 weak keys out of
Inspecting components reveals 80

invariant subspace for large class
of keys
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Subspace Trails

P— X

——e— F —eo ° F —e—

Vida Vo@ b Vodc Vs & d

Figure: Subspace trail

Let R™ denote m applications of the round function F with fixed
round keys K.
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Subspace Trails

P— X

° F —e—

——e— F —eo

Vida Vo@ b Vodc Vs & d

Figure: Subspace trail

Let R™ denote m applications of the round function F with fixed
round keys K.

Subspace Trails

A (constant dimensional) generic subspace trail (Vg, V4, ..., Vi) is
such that for each a, there exist a unique b such that
F(Vi®a) = Vig1 @ b.




Subspaces in block ciphers

Connecting trails / Trail branching

o U= (Uo,...,Un)
o V= (Vo,...,V)

@ a;, b; random and fixed constants.

Ao‘qfl CVo®aoo Al,q—l CVi@ao

Subspace trail cryptanalysis

Azo CVa@ azp

TRl e
L&Y

Up @ ao U@ ar U @ a2

)

[R]
. | R~

Aoo C Vo @ a0,g-1 Ao CV1 @ a1g-1

o=

A2g-1 C V2B azg-1
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Subspace trail cryptanalysis

Connecting trails / Trail branching

U= (Uo,...,Un)
V=(VW,...,Vn)

aj, b; random and fixed constants.
Fm(Uo @ ao) =Un®am

F(Vo @ bo) = Vi, @ by,

Ao‘qfl CVo®aoo

Al,q—l CVi@ao

Azo CVa@ azp

Up @ ao U@ ar U @ a2

TRl e
L&Y

)

Ao,o C Vo @ ao,g-1

[R]
&l

Ao CV1 & alg-1

o=

A2g-1 C V2B azg-1
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Connecting trails / Trail branching

U= (Uo,...,Un)
V=(VW,...,Vn)

aj, b; random and fixed constants.
Fm(Uo @ ao) =Un®am

o F'(Vo @ bo) = V, @ by

e Endpoints of U and V correlate (intersect)

Aog-1 C Vo @ a0 Alg-1 CVi®aip Ao C Vo @ azpo

Up @ ao U@ ar U @ a2

e

Ao,o C Vo @ ao,g-1 Ao CV1@arg1 Arg-1 CVaBazg-1
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Subspace trails in AES

SB SR -— | MC

block size 128 bit, typical key size € {128,256}, rounds
€ {10,14}

internal state viewed as a 4 x 4 matrix states over Fos

rounds consist of fixed function F and addition of round keys
@ F=MCoSRoSB
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Diagonal Space

Let e;; be the 4 x 4 matrix with a single 1 in position /,j (or as a
vector of length 16 with a single 1 in position 4 - j + /).

Definition

(Diagonal spaces) The diagonal spaces D; are defined as
Di =< e, €1,i+1,€2,i12, €343 >

where i + j is computed modulo 4.
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Diagonal Space

Let e;; be the 4 x 4 matrix with a single 1 in position /,j (or as a
vector of length 16 with a single 1 in position 4 - j + /).

Definition

(Diagonal spaces) The diagonal spaces D; are defined as
Di =< e, €1,i+1,€2,i12, €343 >

where i 4 j is computed modulo 4. For instance, the diagonal space
Dy corresponds to the symbolic matrix

xx 0 0 O
0 x» 0 0
DO: { 0 02 X3 0 VX17X2,X3,X4€F28}.

0 0 0 xs
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Column Space

Definition

(Column spaces) The column spaces C; are defined as
Ci=< e €1,6,€3;>.
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Column Space

Definition

(Column spaces) The column spaces C; are defined as
Ci=< e €1,6,€3;>.

For instance, the columns space Cy corresponds to the image of
x 0 0 0

_ x> 0 0

Co _{ x3 000

0 0

‘VX1,X2,X3,X4 S Fzs}.

o O O
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Mixed Space

Definition

(Mixed spaces) The ith mixed subspace M; is defined as
M; = MC o SR(C)).
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Mixed Space

Definition

(Mixed spaces) The ith mixed subspace M; is defined as
M; = MC o SR(C)).

For instance, My corresponds to the image of

Q- X1 X4 X3 (a+1) x
_ X1 Xa (a+1)-x3 - X2
Mo = { x (@+1) a-xs o Vxi, X2, X3, Xa € s
(a+1) - x1 - Xa X3 X2

where « is the generator of the AES field.
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Subspace Trail Cryptanalysis and its Applications to

AES] ], FSE '17

SB SR ] MC

‘* A 4 ¥
4*_- MMM
For fixed I,J C {0,1,2,3}, |[/|+|J| < 4
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Subspace Trail Cryptanalysis and its Applications to

AES] ], FSE '17

SB SR ] MC

‘* A 4 ¥
4*_- MMM
For fixed I,J C {0,1,2,3}, |[/|+|J| < 4

(1] R(D,@a):C,@b
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Subspace Trail Cryptanalysis and its Applications to

AES] ], FSE '17

SB SR T MC i
IE fraa

4*—-

For fixed I,J C {0,1,2,3}, |[/|+|J| < 4

Q@ R(Dy®a)=C Db O R @ RE) =TH
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Subspace Trail Cryptanalysis and its Applications to

AES] ], FSE '17

SB SR T MC i
IE fraa

4*—-

For fixed I,J C {0,1,2,3}, |[/|+|J| < 4

QO R(Dy®a)=Cab @ R(EFH @ REH = B
Q R(C/EBQ):M/EBb
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Subspace Trail Cryptanalysis and its Applications to

AES] ], FSE '17

SB SR T MC i
IE fraa

4*—-

For fixed I,J C {0,1,2,3}, |[/|+|J| < 4

Q@ R(Dy®a)=C Db O R @ RE) =TH
@ R(Ci®a)=M @b @ R(H) e R(F) = MCo SR(J)
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Subspace Trail Cryptanalysis and its Applications to

AES] ], FSE '17

SB SR o MC i
i 44
4(—-

For fixed I,J C {0,1,2,3}, |[/|+|J| < 4

QO R(Dy®a)=Cab @ R(EFH @ REH = B
@ R(Ci®a)=M @b @ R(H) e R(F) = MCo SR(J)
O RACi®a)=M @b
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Subspace Trail Cryptanalysis and its Applications to

AES] ], FSE '17

SB SR o MC i
i 44
4(—-

For fixed I,J C {0,1,2,3}, |[/|+|J| < 4
QO RD®a)=C @b O REH @ REH =TH
@ R(CI®a)=M; @b @ R(H) @ R(H) = MCo SR(TH)
@ R¥(Cima)=M; @b O R2(FE) & R2(E) = MC o SR(EE)
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Subspace Trail Cryptanalysis and its Applications to

AES] ], FSE '17

SB SR o MC i
i 44
4(—-

For fixed I,J C {0,1,2,3}, |[/|+|J| < 4

O R(D;®a)=C @b O REH @ REH =TH
@ R(Cima)=M;®b @ R(E) @ R(H) = MC o SR(JE)
Q@ RX(C/®a)=M; @b © R2(FH) @ R*(|) = MC o SR(E)

Q M,;NnD,={0}
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Subspace Trail Cryptanalysis and its Applications to

AES] ], FSE '17

SB SR g MC A
1=
For fixed I,J C {0,1,2,3}, |[/|+|J| < 4
O R(D;®a)=C @b O REH @ REH =TH
Q@ R(C/®a)=M; &b @ R( ) @ R(JH) = MC o SR(JI)
@ RA(Cima)=M; @b © R2(3) @ R2(#) = MC o SR(E)

Q@ M;NnD,={0} O R*(58) @ R*(E5) # MC o SR(=E)
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Attack on Simpira
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Simpira (now Simpira v1)

' o Simpira: A Family of Efficient
! ) i Permutations Using the AES Round

Function, [GM16]
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Simpira (now Simpira v1)

e Simpira: A Family of Efficient
Permutations Using the AES Round
Function, [GM16]

e a family of cryptographic permutations
supporting 128 x b bits
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Simpira (now Simpira v1)
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Permutations Using the AES Round
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e a family of cryptographic permutations
supporting 128 x b bits

@ designed to achieve high throughput on all
modern 64-bit processors
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modern 64-bit processors

@ uses only one building block, AES
(Intel/AMD/ARM native instructions)
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Simpira (now Simpira v1)

e Simpira: A Family of Efficient
Permutations Using the AES Round
Function, [GM16]

e a family of cryptographic permutations
supporting 128 x b bits

@ designed to achieve high throughput on all
modern 64-bit processors

@ uses only one building block, AES
(Intel/AMD/ARM native instructions)

@ Generalized Feistel Structure
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Simpira (now Simpira v1)

e Simpira: A Family of Efficient
Permutations Using the AES Round
Function, [GM16]

e a family of cryptographic permutations
supporting 128 x b bits

@ designed to achieve high throughput on all
modern 64-bit processors

@ uses only one building block, AES
(Intel/AMD/ARM native instructions)

@ Generalized Feistel Structure

e Claim: no structural distinguishers with
complexity below 2128,
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Simpira with b =4

@ 512 bit permutation
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Simpira with b =4

@ 512 bit permutation

e f(x): one AES round minus constants
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Simpira with b =4

@ 512 bit permutation
e f(x): one AES round minus constants
e F-function: Ff(x) = f(f(x)+ kei)
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Simpira with b =4

512 bit permutation
f(x): one AES round minus constants
F-function: Ff(x) = f(f(x)+ kei)

Different constants in each new F-function
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Simpira with b =4

512 bit permutation
f(x): one AES round minus constants
F-function: Ff(x) = f(f(x)+ kei)

Different constants in each new F-function

Iterated for many rounds (not important)
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Simpira with b =4

512 bit permutation
f(x): one AES round minus constants
F-function: Ff(x) = f(f(x)+ kei)

Different constants in each new F-function

Iterated for many rounds (not important)

Suitable for a wide range of applications.



From subspace trails to invariant subspaces in Simpira Two round property

Initial observation for two rounds

t t t
Xp 4 X- X
a(ro 0> 2 3)952 e @ Fi(x)=f(f(x)+ kei) where ki € Co
° t

t bt 4x4x4
(X07X17X27X3) € Fzs
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Initial observation for two rounds

t ot t
Xn, X X
go 0071372 3)952 s @ F/(x) = f(f(x) + ke,;) where ke ;i € Con
° t F33X4X4
—Ebe e{rl
777% Serr =0 XY X X4

=(Fi(x0) & x1, F2(03) & %2, 33, X0)
quiine BN iy

S

(X07 XL Xé: X?l:) €
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Initial observation for two rounds

o T T2 Z3
H6 el
T T S = A

t t t
(x5, x{, %3, %3) ® Fi(x) = f(f(x) + ke) where ki € Cos
]

t t t t 4x4x4
(X07X17X27X3) € Fzs

=(F1(x0) ® x1, F2(x3) @ 53, x5, X0)
9 € S 42 (042 042 2
t+2 _( y X2 5, X3 )

???ﬁ _(Ft+1( H»l)@ ]l.‘+1 FH»I( t+1)®X2t+1 t+1 X(§+1)



From subspace trails to invariant subspaces in Simpira

Initial observation for two rounds

Two round property

Fi(x) =

Ser1 =(xo

Sti2

t+1 t+1

X3 —X07X2

® (x0,x1,x2,%3) €

1 1 1
( t+ t+ XH—

y X1 X2 X3

:(Ff(Xé) ® X1, Fz(X3)

2 2 2
( t+ H— XH—

y X2 5, X3

f(f(x) + ke i) where k;; € Co1
F4><4><4
28

H—l)

t t
y X35 XO)
t+2)

( H»l( t+1)@X{+1 FH»I( t+1)®xzt+1 t+1 Xé+1)

_ t+1 to ot t
X37Xo = Fi(x) ®x1
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Initial observation for two rounds

t t t
Xp 4 X- X
S: 0772 3)902 e @ Fi(x)=f(f(x)+ kei) where ki € Co

t t t t 4x4x4
° (X07X17X27X3) ers

R N R
77% Seir=(x x X )

:(Flt(xé)@X{aF2(X3) >XZ§7XOt)
9 € S 42 442 t+2 | r2
t42 ( y X2 5, X3 )

17??? ( t+1( t+1)@xlt+1 Ft+1( t+1)®X2t+1 t+1 X(§+1)

+1 +1 +1
X3t - XO7X§ = X37X(§ Ff(Xé) @X{
(xR ()@ g, FE () x4))
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Initial observation for two rounds

t t t
(0, X1, 2, %3) . @ Fi(x) = F(F(x) + ke.;) where ke; € Cox
[*]

t t t t 4x4x4
(X07X17X27X3) € Fzs

eV e e
77% Seir=(x x X )

=(Fi(x0) & x1, F2(>3) @ x2, x5, x0)
9 € S 42 (042 042 2
t+2 _( y X2 5, X3 )

???ﬁ _(Ft+1( t+1) @X]l.url FH»I( t+1) ®X2t+1 t+1 X(§+1)

X3t+1 - X07 X§+1 - X37 X5+1 Ff(Xé) S X{
(3 23 T () @40, F (<) @)

Structure R
(a,b,¢c,d) == (2, Fi(a) @ d, a, F2(a) @ b). J
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The parallel F-function

e f(x) one AES round minus key addition
e f(x) x f(x) (in parallell)

@ constants ¢; = and o =

Parallell F-function

Fl(a) X Fz(a) :f(f(a) D C1) X f(f(a) ©® Cg)
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Trivial Invariant subspace in f(x) x f(x)

f(a) xf(a)=bxb
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Constants space

constants ¢; = ﬁ and ¢ = E
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Constants space

constants ¢; = ﬁ and ¢ = E
Adding a constant

We begin with an invariant space a X a

f(%) X f(ﬁ) :.x.
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Constants space

constants ¢; = ﬁ and ¢ = E
Adding a constant

We begin with an invariant space a X a

f(%) X f(ﬁ) :.x.

...then add constants in the middle...
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Constants space

constants ¢; = ﬁ and ¢ = E
Adding a constant

We begin with an invariant space a X a

f(%) X f(ﬁ) :.x.

...then add constants in the middle...

G~ @ eg~3i-H~ 1

lEBcl
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One more round

We begin with an invariant subspace a x a

f(%) X f(ﬁ) :.x.

...then add constants in the middle...

@~ @ eg<3i-1~1

.. and apply another AES round...

<P =
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One more round

We begin with an invariant subspace a x a

f(%) X f(ﬁ) :.x.

...then add constants in the middle...

@~ @ eg<3i-1~1

.. and apply another AES round...

<P =
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One more round

We begin with an invariant subspace a x a

f(%) X f(ﬁ) :.x.

...then add constants in the middle...

@~ @ eg<3i-1~1

.. and apply another AES round...

<P =
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One more round

We begin with an invariant subspace a x a

- EHEE B
...then add constants in the middle...
I EZRGUERECE ! RE:

.. and apply another AES round...

<P =
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We begin with an invariant subspace a x a

| B

- CrrrSSSS—
N
|

f(%) X f(ﬁ) :.x.

...then add constants in the middle...

ERSNNTINNC NI |

|
fifJ‘ ... and apply another AES round...
|

f(u Xf(u MC o SR( .)XMCOSR(-)
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We begin with an invariant subspace a x a

m  forermoeomd ]
1
\

f(%) X f(ﬁ) :.x.

...then add constants in the middle...

BN BT B

|
fifJ‘ ... and apply another AES round...
|

f(u Xf(u MC o SR( .)XMCOSR(-)

) n
X ®
\
|
RN

MC \MC

Subspace trail in paralllel F-function
Fl(u_l ng(u MCoSR( .)xMCoSR(-)

.
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e (a,b,c, d) (z Fi(a) @ d, a, F2(a) @ b)
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Invariant subspace over 2 rounds

o (a,b,¢,d) X (2, Fi(a) @ d, a, Fa(a) ® b)

o Fl(

)XF2(

) = MCo SR(=) x MC o SR(=)




From subspace trails to invariant subspaces in Simpira Invariant subspace over 2 rounds

o (a,b,c,d) & (2, Fi(a) @ d, 3, F2(a) @ b)
o F (T x F(TTT) = MC o SR(=) x MC o SR(=)

@ (Imagine MC o SR around all values of the state)




From subspace trails to invariant subspaces in Simpira Invariant subspace over 2 rounds

o (a,b,c,d) & (2, Fi(a) @ d, 3, F2(a) @ b)
o F (T x F(TTT) = MC o SR(=) x MC o SR(=)

@ (Imagine MC o SR around all values of the state)
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o (a,b,¢,d) X (2, Fi(a) @ d, a, Fa(a) ® b)
o F (T x F(TTT) = MC o SR(=) x MC o SR(=)

o (Imagine MC o SR around all values of the state)

QI 1 = @ e
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o (a,b,¢,d) X (2, Fi(a) @ d, a, Fa(a) ® b)
o F (T x F(TTT) = MC o SR(=) x MC o SR(=)

o (Imagine MC o SR around all values of the state)

QA IO =Ep = =
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o (a,b,¢,d) X (2, Fi(a) @ d, a, Fa(a) ® b)
o F (T x F(TTT) = MC o SR(=) x MC o SR(=)

o (Imagine MC o SR around all values of the state)

QA IO =Ep = =
ﬁ’ AR | S3ES (T 5




RZ
e (a,b,c,d) —

o Fl(

(z, F1(a) ® d,a, Fa(a) @ b)

)XF2(

) = MCo SR(=) x MC o SR(=)

o (Imagine MC o SR around all values of the state)

(D DD - o
i A Fe R D
- FAl-H-EEl-b



e (a,b,c,d)

o Fl(

2
& (2, F1(a) @ d, a, F2(a) @ b)

)XF2(

) = MCo SR(=) x MC o SR(=)

o (Imagine MC o SR around all values of the state)

(D DD - o
i A Fe R D
- FAl-H-EEl-b

- i iR = 50 . 8D



e (a,b,c,d)

o Fl(

2
& (2, F1(a) @ d, a, F2(a) @ b)

)XF2(

) = MCo SR(=) x MC o SR(=)

o (Imagine MC o SR around all values of the state)

(D DD - o
@ o EE B
i) Buigalel Qi

- (T = T

- (B =P
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Invariant subspaces in Simpira

([T THII®H) = (a, MCoSR(z21©x), b, MCoSR(z2 ®x @ c))

where



From subspace trails to invariant subspaces in Simpira Invariant subspace over 2 rounds

Invariant subspaces in Simpira

([T THII®H) = (a, MCoSR(z21©x), b, MCoSR(z2 ®x @ c))
where

@ a, b set to all possible values (g32)



From subspace trails to invariant subspaces in Simpira Invariant subspace over 2 rounds

Invariant subspaces in Simpira

(FF 75 T3 il e[ = (2, MCoSR(z1@x), b, MCo SR(z@x@c))
where
@ a, b set to all possible values (g32)

o z set to all possible values in two left columns (g')



From subspace trails to invariant subspaces in Simpira Invariant subspace over 2 rounds

Invariant subspaces in Simpira

(FF 75 T3 il e[ = (2, MCoSR(z1@x), b, MCo SR(z@x@c))
where
@ a, b set to all possible values (g32)

o z set to all possible values in two left columns (g')

@ x set to all possible values in two right columns (g®)



From subspace trails to invariant subspaces in Simpira Invariant subspace over 2 rounds

Invariant subspaces in Simpira

(ﬁ, ﬁ, ﬂ,ﬁ@@) = (a, MCoSR(z1®x), b, MCoSR(z®x®c))
where

@ a, b set to all possible values (g32)
o z set to all possible values in two left columns (g')
@ x set to all possible values in two right columns (g®)

@ c random fixed value in two right columns (g®)



From subspace trails to invariant subspaces in Simpira Invariant subspace over 2 rounds

Invariant subspaces in Simpira

(ﬁ, ﬁ, ﬂ,ﬁ@@) = (a, MCoSR(z1®x), b, MCoSR(z®x®c))
where

@ a, b set to all possible values (g32)
o z set to all possible values in two left columns (g')
@ x set to all possible values in two right columns (g®)

@ c random fixed value in two right columns (g®)

Conclusion for Simpira

@ Invariant subspaces in round function from non-invariant
subspaces in AES F-function.

@ Covers whole plaintext space with 2°* invariant cosets of
dimension 56 over [y (first time?)

@ Trivial distinguisher




Zero-difference cryptanalysis of

AES



Zero-difference cryptanalysis of AES Zero differences and exchange operations in SPNs

The zero difference pattern

Definition (Zero difference pattern)

Let o = (ag, o1, ..., an-1) € Fy. Define
V(a) = (207217 ceey Zn—]_) € ]Fg
where
1 if aj is zero,

0 otherwise.




Zero-difference cryptanalysis of AES Zero differences and exchange operations in SPNs

Setting

o Let a = (ap,a1,...,a,-1) € Fj denote the state of a block
cipher.

o Let g =2 and let s be a kxk permutation s-box.
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Setting

o Let a = (ap,a1,...,a,-1) € Fj denote the state of a block
cipher.
o Let g =2 and let s be a kxk permutation s-box.

@ The S-box working on a state is defined by
5(a) = (s(ao), s(1), - - -, s(an-1))
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Setting

o Let a = (ap,a1,...,a,-1) € Fj denote the state of a block
cipher.
Let g = 2X and let s be a kxk permutation s-box.

@ The S-box working on a state is defined by
5(a) = (s(ao), s(1), - - -, s(an-1))

Let L be a linear layer in the block cipher



Zero-difference cryptanalysis of AES Zero differences and exchange operations in SPNs

Setting

o Let a = (ap,a1,...,a,-1) € Fj denote the state of a block
cipher.
Let g = 2X and let s be a kxk permutation s-box.

@ The S-box working on a state is defined by
5(a) = (s(ao), s(1), - - -, s(an-1))

@ Let L be a linear layer in the block cipher

@ We consider a substitution permutation networn (SPN) of the
form SolLoSolLoS.



Zero-difference cryptanalysis of AES Zero differences and exchange operations in SPNs

The S-box

For two states o and B in Fg, the zero difference pattern is
preserved by a permutation S-box

v(a® ) = v(S(a) ® 5(B))-




Zero-difference cryptanalysis of AES Zero differences and exchange operations in SPNs

The S-box

For two states o and B in Fg, the zero difference pattern is
preserved by a permutation S-box

v(a® ) = v(S(a) ® 5(B))-

Follows since a; @ f; = 0 iff s(«;) @ s(B;) = 0 and thus the S-box
preserves the zero difference pattern. Ol




Zero-difference cryptanalysis of AES Zero differences and exchange operations in SPNs

The exchange operation

Definition

For a vector ¢ € F] and a pair of states a, 3 € g define a new
state p°(«, 5) by

aj if¢=1,

P (Oé,,B),‘ = ﬂ,’ i —
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The exchange operation

Definition

For a vector ¢ € F] and a pair of states a, 3 € g define a new
state p°(«, 3) by

pc(av /B)I = {

aj if =1,

ﬂ,’ if Ci =0.

Let ¢ = (0110) and a = (g, 1, a2, 3) and 8 = (Bo, B1, B2, B3).
Then

o = p(0110)(a75) = (Bo, a1, a2, B33)
and

5" = pP10(5,a) = (ao, b1, B2, a3)




Zero-difference cryptanalysis of AES Zero differences and exchange operations in SPNs

Properties of the exchange operation (I)

Lemma

a) p(a, B)i ® p°(B, )i =@
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Properties of the exchange operation (I)

Lemma

a) p(a, B)i ® p°(B, )i =@

a)

ai®Bi ifc=1,

pS(e, B) ® p°(B, ) = {/3,, ®a; ifc=0




Zero-difference cryptanalysis of AES Zero differences and exchange operations in SPNs

Properties of the exchange operation (I)

a) p(a, B)i ® p°(B,)i = a® B
b) S(p°(c, B)) ® S(p°(B,)) = S(a) ® S(B)

a)

ai®Bi ifc=1,

pS(e, B) ® p°(B, ) = {/3,, ®a; ifc=0
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Properties of the exchange operation (I)

Lemma

a) p(a, B)i ® p°(B,)i = a® B
b) S(p°(c, B)) ® S(p°(B,)) = S(a) ® S(B)

Proof.
a)
ai®Bi ifc=1,

pS(e, B) ® p°(B, ) = {/3,, ®a; ifc=0

s(p(ar S(o5(B. ) — s(a)®s(B) ifa=1,
(p°(a, B)) & s(p°(B, ) {5(5i)@s(ai) e




Zero-difference cryptanalysis of AES Zero differences and exchange operations in SPNs

Properties of the exchange operation (I)

Lemma

a) p(a,B)i ® p°(B,a)i =a® B

b) S(p°(a, B)) ® S(p°(B, @) = S() ® S(B)
c) p(S(a),5(B)) = S(p(ex, B))

a)
. . _Jaiep ifa=1,
p(a,ﬂ)@p(ﬂ,a){ﬁi@ai ifc=0
b)

s(p(a, B)) @ s(p°(B, ) = {s(a;) ®s(8) ifc=1,

s(Bi)®s(ai) ifc=0
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Properties of the exchange operation (I)

Lemma

a) p(a,B)i ® p°(B,a)i =a® B

b) S(p°(a, B)) ® S(p°(B, @) = S() ® S(B)
c) p(S(a),5(B)) = S(p(ex, B))

a)

ai®Bi ifc=1,
ﬂi@ai ifC,‘ZO

(e, B) ® p°(B,0) = {

s(ai) if =1,

p°(S(a),S(B)) = S(p° (e, B)) = {5(5.) if =0




Zero-difference cryptanalysis of AES Zero differences and exchange operations in SPNs

Properties of the exchange operation (II)

Let L be a linear transformation. Then

L(p®(e, B)) @ L(p°(B, ) = L(a) & L(B)
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Properties of the exchange operation (II)

Let L be a linear transformation. Then

L(p“(a, B)) ® L(p°(B,a)) = L(a) ® L(B)

Lemma 2a) gives

P, B) @ p°(B,a) =@ f
and the result follows from the linearity of L. Ol

\




Zero-difference cryptanalysis of AES Zero differences and exchange operations in SPNs

Properties of the zero-difference pattern

Let v(«) denote the zero difference pattern of
a=(ag,01,...,0n-1).

Lemma

a) v(a® B) =v(S(a) ® S(B))
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Properties of the zero-difference pattern

Let v(«) denote the zero difference pattern of
a=(ag,01,...,0n-1).

Lemma

a) v(a® B) =v(S(a) ® S(B))

a) Since S is a permutation

(i ® B;) = 0iff s(c) ® (1) = 0
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Properties of the zero-difference pattern

Let v(«) denote the zero difference pattern of
a=(ag,01,...,0n-1).

Lemma
a) v(a® B) =v(S(a) ® S(B))
b) v(S(L(a)) @ S(L(B))) = v(S(L(p(ax, B))) ® S(L(p°(B,))))

a) Since S is a permutation

(i ® B;) = 0iff s(c) ® (1) = 0
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Properties of the zero-difference pattern

Let v(«) denote the zero difference pattern of
a=(ag,01,...,0n-1).

Lemma
a) v(a® B) =v(S(a) ® S(B))
b) v(S(L(a)) @ S(L(B))) = v(S(L(p(ax, B))) ® S(L(p°(B,))))

Proof.

a) Since S is a permutation

(i ® B;) = 0iff s(c) ® (1) = 0

b) Since Lemma 3 implies

) L(p (o, B)) ® L(p°(B; @) = L(e) ® L(B)
then

(S(L(e)) @ S(L(B)))i = 0 iff (L(a) ® L(B))i = O
iff (L(p"(a, B)) & L(p°(8,)))i = O
iff (S(L(p"(a, B))) & S(L(p°(B, @)))i = O




Zero-difference cryptanalysis of AES Zero differences and exchange operations in SPNs

The Zero-differences and the exchange operation

Let o' = p(a, B) and B = p(B, ), then , /
v(S(L(S(a))) & S(L(S5(8)))) = v(S(L(S(a))) & S(L(S(8))))
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The Zero-differences and the exchange operation

Let o' = p(a, B) and B = p(B, ), then , /
v(S(L(S(a))) & S(L(S5(8)))) = v(S(L(S(a))) & S(L(S(8))))

v

l:‘)
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The Zero-differences and the exchange operation

Let o' = p(a, B) and B = p(B, ), then , /
v(S(L(S(a))) & S(L(S5(8)))) = v(S(L(S(a))) & S(L(S(8))))

v

a @ B = p(e, B) (&) p°(B, )

A\
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The Zero-differences and the exchange operation

Let o' = p(a, B) and B = p(B, ), then , /
v(S(L(S(a))) & S(L(S5(8)))) = v(S(L(S(a))) & S(L(S(8))))

v

o ® B = pf(e, B) ® p°(B, )
I S I = 4 S I
S(@ @ s(B) = S((xp) e  S(r(Ba)
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The Zero-differences and the exchange operation

Let o' = p(a, B) and B = p(B, ), then , /
v(S(L(S(a))) & S(L(S5(8)))) = v(S(L(S(a))) & S(L(S(8))))

v

@ @ B = pC(O"ﬂ) D pc(ﬂva)
4 S 4 = (3 S 4
S(a) @ 5(8) = 5(p° (e, B)) ® S(p°(B,))
A ik U = 4 i (3
L(S()) @ L(S(B) = LSKp(xB) &  L(S(p(B;a)))

l:‘)
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The Zero-differences and the exchange operation

Let o' = p(a, B) and B = p(B, ), then , /
v(S(L(S(a))) & S(L(S5(B)))) = v(S(L(S(«))) & S(L(S(5)))) |

@ @ B = pC(O"ﬂ) D pc(ﬂva)
4 S 4 = (3 S 4
S(a) @ 5(8) = 5(p° (e, B)) ® S(p°(B,))
A ik U = 4 i (3
L(Sl(la)) 659 Lis@) = LS (o, 8)) 29 L(S(p*(B,a)))

I I I
S(L(S(a)) @ S(L(S(B)) S(L(S(p*(,8))) @ 5(L(5(pc(ﬂ,a%))
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Typical use of exchange operation

Zero difference preservation
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Typical use of exchange operation

Zero difference preservation

a) Pick two plaintexts p® and p! with a zero difference u(p® @ p?).
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Typical use of exchange operation

Zero difference preservation

a) Pick two plaintexts p® and p! with a zero difference u(p® @ p?).

b) Encrypt p° and p! to c® and .
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Typical use of exchange operation

pwip® @ pY)

4 S 3
S(°) @ S(pY)
I L 4
L(S(p°) @ L(S(pY))

Zero difference preservation

a) Pick two plaintexts p® and p! with a zero difference u(p® @ p?).

b) Encrypt p° and p! to c® and .
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Typical use of exchange operation

pwip® @ pY)

4 S 3
S(°) @ S(pY)
I L 4
L(S(P°) & L(S(pY)

S 4
c° D ct

Zero difference preservation

a) Pick two plaintexts p® and p! with a zero difference u(p® @ p?).

b) Encrypt p° and p! to c® and .
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Typical use of exchange operation

pwip® @ pY)
4 S 3
S(°) @ S(pY)
I L 4
L(S(p°) @ L(S(pY))
S 4
C0 @ Cl = CO/ D Cl/

Zero difference preservation

a) Pick two plaintexts p® and p! with a zero difference u(p® @ p?).
b) Encrypt p° and p! to c® and .

c) Make two new ciphertexts c¥ = p°(c?, c!) and
Cl/ _ pC(Cl, C2).
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Typical use of exchange operation

pwip® @ pY)
4 S 3
S(°) @ S(pY)
I L 4
L(S(p°) @ L) = S7Hc™) ® S7H(cY)
S U i) s f
C0 @ Cl = CO/ D Cl/

Zero difference preservation

a) Pick two plaintexts p® and p! with a zero difference u(p® @ p?).
b) Encrypt p° and p! to c® and .
c) Make two new ciphertexts c¥ = p°(c?, c!) and

Cl/ _ pC(Cl, C2).

d) Decrypt ¢ and cV.
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Typical use of exchange operation

pwip® @ pY)
4 S 3
S’ @ S = LTS @ LTHETHM)
I L 4 = i Lt )
L(S(p°) @ L) = S7Hc™) ® S7H(cY)
S U i) s f
CO @ Cl = CO/ D Cll

Zero difference preservation
a) Pick two plaintexts p® and p! with a zero difference u(p® @ p?).
b) Encrypt p° and p! to c® and .
c) Make two new ciphertexts c¥ = p°(c?, c!) and
Cl/ _ pC(Cl, C2).

d) Decrypt ¢ and cV.
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Typical use of exchange operation

wp® e p)  E u(p*) ® p')
I S I = f st 1)
S @ S = LTHSTH) @ LTHSTHEY)
4 L 3 = 1 Lt f
L(S(°) @ L(S(pY) = S7Hc) b S7H(cY)
S 4 f st ()
CO @ Cl = CO/ D Cll

Zero difference preservation

a) Pick two plaintexts p® and p! with a zero difference u(p® @ p?).
b) Encrypt p° and p! to c® and .
c) Make two new ciphertexts c¥ = p°(c?, c!) and
Cl/ _ pC(Cl, C2).
d) Decrypt ¢ and cV.
e) v(p® @ p') = v(p” @ p)
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Three Rounds of AES

CSB1 [SB1 [SB]

Figure: Three rounds SBo MCoSRoS=Qo S

R3 = (AKoMCoSRoSB)o(AKoMCoSRoSB)o(AKoMCoSRoSB).

Rewrite in terms of
@ S=MCoSBoMC
@ L =SRoMCoSR

R*3 = (SBoMCoSR)o(SBoMCoSB)= QoS



Zero-difference cryptanalysis of AES

Three Round AES Distinguisher

3 Rounds of AES

Three rounds of AES can be distinguished from a random cipher

using one pair of chosen plaintexts and one (adaptively) chosen
ciphertext.

B
L

-~
D

¥s Is
sk ¢5R7
[T] [T]
FJ; LI
LI [

lMCoSE lMCoSB
o ct
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Three Round AES Distinguisher

Three rounds of AES can be distinguished from a random cipher

using one pair of chosen plaintexts and one (adaptively) chosen
ciphertext.

T
3

@ Select p° @ p! that differ in only

-~
D

one word
¥s Is
sk sk
M M
FJ;, EEEE
[ [

lMCoSE lMCoSB
o ct
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Three Round AES Distinguisher

Three rounds of AES can be distinguished from a random cipher

using one pair of chosen plaintexts and one (adaptively) chosen
ciphertext.

T
3

@ Select p° @ p! that differ in only
one word

-~
D

@ ask for encryption c® and ¢! of p°
[ AN and pt
I Is
sk sk
1] [
FJ; L1
LI I




Zero-difference cryptanalysis of AES 3 Rounds of AES

Three Round AES Distinguisher

Three rounds of AES can be distinguished from a random cipher
using one pair of chosen plaintexts and one (adaptively) chosen
ciphertext.

T
3

@ Select p° @ p! that differ in only
one word

-~
D

@ ask for encryption c® and ¢! of p°
and pt

Is Is © Let H; be the image of the ith

column of SR(S(p®) & S(p?))
under MC o SB
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Three Round AES Distinguisher

Three rounds of AES can be distinguished from a random cipher
using one pair of chosen plaintexts and one (adaptively) chosen

ciphertext.
| | @ Select p° @ p! that differ in only
one word

@ ask for encryption c® and ¢! of p°
and pt

Is Is © Let H; be the image of the ith
column of SR(S(p®) & S(p?))
under MC o SB

[ Is# Q@ select v = (vo,v1, v2, v3) where
© ] 0 1
FI I Vi € {Ci , G
[ I

MC o SB MC o SB

@ >
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Three Round AES Distinguisher

Three rounds of AES can be distinguished from a random cipher
using one pair of chosen plaintexts and one (adaptively) chosen
ciphertext.

T
3

-~

@ Select p° @ p! that differ in only
one word

@ ask for encryption c® and ¢! of p°
and pt

Is Is A © Let H; be the image of the ith

column of SR(S(p®) & S(p?))
under MC o SB

[ Is# Yo Q select vO: l(vo, vi, v2, v3) where
I* . EEE Vi € {Ci , G
H ‘ * T @ ask for decryption (denote u) of v

MC o SB MC o SB (MC o SB)~!

i
=
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Three Round AES Distinguisher

Three rounds of AES can be distinguished from a random cipher
using one pair of chosen plaintexts and one (adaptively) chosen

ciphertext.
| | @ Select p° @ p! that differ in only
one word

@ ask for encryption c® and ¢! of p°
and pt

Is Is A © Let H; be the image of the ith

column of SR(S(p®) & S(p?))
under MC o SB

|5 I Yo Q@ select v = (vo,v1, v2, v3) where
° < | ) 0 .1
T T EN viele,q
‘FJ“* *J“* ‘F*T @ ask for decryption (denote u) of v
e s lMCOSB (MCa 5B Q@ Then v(p° ® p') = v(u ® p) since
» L med=v ) the ith component of v is in H;

Probability 279 for random.
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Four Rounds of AES

Figure: So Lo S in AES



Zero-difference cryptanalysis of AES 4 Rounds of AES

Four Round AES Distinguisher

Four rounds of AES can be distinguished from a random cipher
using one pair of chosen plaintexts and one (adaptively) chosen
ciphertext pair.

T
3

@ Select p° @ p! that differ in only
one word



Zero-difference cryptanalysis of AES 4 Rounds of AES

Four Round AES Distinguisher

Four rounds of AES can be distinguished from a random cipher
using one pair of chosen plaintexts and one (adaptively) chosen
ciphertext pair.

@ Select p° @ p! that differ in only

one word
REEE EEE @ ask for encryption c® and ¢! of p°
[T [T and p!
¥s ¥s
L iz
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Four Round AES Distinguisher

Four rounds of AES can be distinguished from a random cipher
using one pair of chosen plaintexts and one (adaptively) chosen
ciphertext pair.

@ Select p° @ p! that differ in only
one word

@ ask for encryption c® and ¢! of p°
DEEN (11 and p!

Is Is © construct

1 1 VO = pC(CO, Cl), vl = pC(Cl, CO)

(e (med 2y i
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Four Round AES Distinguisher

Four rounds of AES can be distinguished from a random cipher
using one pair of chosen plaintexts and one (adaptively) chosen
ciphertext pair.

P p uf u
@ Select p° @ p! that differ in only
one word
RN HEN A ’ @ ask for encryption c® and ¢! of p°
[T [T and p!
Is Is [ERS © construct
mEnjinc VO = (0, 1), vE = p(h, )
T EEN Em , Q@ get plaintexts v, ut.
I W |G

(e (med 2y i

<
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Four Round AES Distinguisher

Four rounds of AES can be distinguished from a random cipher
using one pair of chosen plaintexts and one (adaptively) chosen
ciphertext pair.

5

@ Select p° @ p! that differ in only
one word

ask for encryption ¢® and ¢! of p°
yP P

HH 1 TN ' and pt

Is Is [ERS © construct

0 VO = p¢(c0, c), vt = p¢(c, c0)

T EEN Em , Q@ get plaintexts v, ut.

n I fe et @ if AES, then same zero difference

pattern (prob for random = 296)

s s s e Extends to 5-round distinguisher

(e (med 2y i

b A it ” and key-recovery.
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6 Round AESas SolLoSolLoS

@ 6 rounds AES is

SolLoSolS
@ preserve zero differences in
middle
@ combine with impossible
differential property :::

o first distinguisher for 6
rounds (high complexity)

Figure: Six Rounds AES



Zero-difference cryptanalysis of AES 6 Rounds of AES

Conclusion

new records 3-6 round distinguishers AES
new record 5 round key recovery
can be applied directly to similar designs as well

can be improved (more rounds) for lightweight designs
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Conclusion

Thank youl



Zero-difference cryptanalysis of AES

6 Rounds of AES

Exchange operation and So Lo So Lo S ciphers

Let

o p% = p°(p° p") P = p°(p*, P°)
o 0 — pc(C07C1) clx — pc(cl,CO)
@ Gb=S0lLoS
v(G2(p”) @ Ga(p")) = v(G; (™) @ G (™).
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Exchange operation and So Lo So Lo S ciphers

Let

o p% = p°(p° p") P = p°(p*, P°)
o 0 — pc(C07C1) clx — pc(cl,CO)
@ Gb=S0lLoS
v(G2(p”) @ Ga(p")) = v(G; (™) @ G (™).

0 1

p ® P

I S 3
S(°) @  S(pY)

U L 4
L(S(°) @ L(S(pY)

4 S 4

U L 4

4 S 4

c° D ct
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Exchange operation and So Lo So Lo S ciphers

Let

o p% = p°(p° p") P = p°(p*, P°)
o 0 — pc(C07C1) clx — pc(cl,CO)
@ Gb=S0lLoS
v(G2(p”) @ Ga(p")) = v(G; (™) @ G (™).

pO @ pl — pOI o) pl/
I S 3 = U S 4
S(°) @  S(pY)
U L 4
L(S(°) @ L(S(pY)
4 S 4
U L 4
4 S 4
c° D ct
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