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Block ciphers as family of permutations

Block ciphers
A block cipher defines a map

E : P ⇥K ! C
that takes plaintexts and keys to ciphertexts.
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1 fixing a key K 2 K defines a permutation
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2 fixing all keys defines a set
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Is the block cipher sufficiently generic ?

Distinguishers and property testing
Is there a property that distinguishes one or a class of few from the
many ?
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Distinguisher to key recovery
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distinguisher for r out of n rounds of the cipher
guess enough key bytes in decryption direction
verify key guess in the middle using distinguisher



Preliminaries Block ciphers

Distinguisher to key recovery

E r
K ? D(n�r)

K

p

S

c

S

0

distinguisher for r out of n rounds of the cipher
guess enough key bytes in decryption direction
verify key guess in the middle using distinguisher



Preliminaries Block ciphers

Distinguisher to key recovery

E r
K ? D(n�r)

K

p

S

c

S

0

distinguisher for r out of n rounds of the cipher
guess enough key bytes in decryption direction
verify key guess in the middle using distinguisher



Subspaces in block ciphers

Subspace attacks



Subspaces in block ciphers Preliminaries

Subspace cryptanalysis

Basic exploitation
Plaintexts or ciphertexts stay inside linear and affine subspaces for
many rounds (form of truncated differentials)

Brief overview
A Cryptanalysis of PRINTcipher: The Invariant Subspace

Attack(CRYPTO’11)
A Generic Approach to Invariant Subspace Attacks:

Cryptanalysis of Robin, iSCREAM and Zorro, (EC’15)
Subspace Trail Cryptanalysis and its Applications to AES (FSE
’17)
related to superbox cryptanalysis and truncated differentials
...active research area
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Some notation

Fn is n-dimensional space over field F
let V be a subspace of Fn

Let F be a function on Fn (a permutation)
S = F (V ) = {F (v), | v 2 V }
cosets : V � a = {v � a | v 2 V } for V ✓ Fn



Subspaces in block ciphers Invariant subspaces

Invariant subspace attacks

F

V � a V � b

Consider a permutation formed by iterating a permutation F xored
with a fixed round key K . Assume the round function maps a
coset V � a to a coset V � b
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Invariant subspace attacks

F

V � a V � b

K 2 (a� b)� V

V � a

...and that the fixed round key K is in V � (a� b).
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Invariant subspace attacks

F

V � a V � b

K 2 (a� b)� V

V � a

F

V � b

Then this process repeats itself.
Plaintexts in coset V � a are mapped to itself
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Invariant subspace attacks

F

V � a V � b

K 2 (a� b)� V

V � a

F

V � b

Confidentiality is broken: Density of weak keys =2n�dim(V )
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A Cryptanalysis of PRINTcipher: The Invariant Subspace

Attack, [Leander+]

Inspecting components reveals
invariant subspace for large class
of keys

block size n = 48
Fixed key K in each round
(used for key-dependent p
and XOR)
Round constant
Finds 252 weak keys out of
280
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Subspace Trails
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Figure: Subspace trail

Let Rm denote m applications of the round function F with fixed
round keys Ki .

Subspace Trails

A (constant dimensional) generic subspace trail (V
0

,V
1

, ...,Vm) is
such that for each a, there exist a unique b such that

F (Vi � a) = Vi+1

� b.
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Connecting trails / Trail branching
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Subspace trails in AES

SB SR MC

block size 128 bit, typical key size 2 {128, 256}, rounds
2 {10, 14}
internal state viewed as a 4 ⇥ 4 matrix states over F

2

8

rounds consist of fixed function F and addition of round keys
F = MC � SR � SB
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Diagonal Space

Let ei ,j be the 4 ⇥ 4 matrix with a single 1 in position i , j (or as a
vector of length 16 with a single 1 in position 4 · j + i).

Definition

(Diagonal spaces) The diagonal spaces Di are defined as
Di =< e

0,i , e1,i+1

, e
2,i+2

, e
3,i+3

>

where i + j is computed modulo 4. For instance, the diagonal space
D

0

corresponds to the symbolic matrix

D
0

=

⇢
2

664

x
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0 0 0
0 x

2

0 0
0 0 x

3

0
0 0 0 x
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Column Space

Definition

(Column spaces) The column spaces Ci are defined as
Ci =< e

0,i , e1,i , e2,i , e3,i > .

For instance, the columns space C
0

corresponds to the image of

C
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Mixed Space

Definition

(Mixed spaces) The ith mixed subspace Mi is defined as
Mi = MC � SR(Ci ).

For instance, M
0

corresponds to the image of

M0 =

⇢
2

664

↵ · x1 x4 x3 (↵+ 1) · x2
x1 x4 (↵+ 1) · x3 ↵ · x2
x1 (↵+ 1) · x4 ↵ · x3 x2

(↵+ 1) · x1 ↵ · x4 x3 x2

3

775

���� 8x1, x2, x3, x4 2 F28

�

where ↵ is the generator of the AES field.
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Subspace Trail Cryptanalysis and its Applications to

AES[GRR17], FSE ’17

SB SR MC

For fixed I , J ⇢ {0, 1, 2, 3}, |I |+ |J|  4

1
R(DI � a) = CI � b

2
R(CI � a) = MI � b

3
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4 MI \DJ = {0}
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Attack on Simpira



From subspace trails to invariant subspaces in Simpira Overview

Simpira (now Simpira v1)

Simpira: A Family of Efficient

Permutations Using the AES Round

Function, [GM16]
a family of cryptographic permutations
supporting 128 ⇥ b bits
designed to achieve high throughput on all
modern 64-bit processors
uses only one building block, AES
(Intel/AMD/ARM native instructions)
Generalized Feistel Structure
Claim: no structural distinguishers with
complexity below 2128.
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The parallel F-function

f (x) one AES round minus key addition
f (x)⇥ f (x) (in parallell)
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Trivial Invariant subspace in f (x)⇥ f (x)

f (a)⇥ f (a) = b ⇥ b
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Invariant subspaces in Simpira

( , , , � ) = (a,MC �SR(z
1

�x), b,MC �SR(z
2

�x�c))

where
a, b set to all possible values (q32)
zi set to all possible values in two left columns (q16)
x set to all possible values in two right columns (q8)
c random fixed value in two right columns (q8)

Conclusion for Simpira
Invariant subspaces in round function from non-invariant

subspaces in AES F-function.
Covers whole plaintext space with 264 invariant cosets of
dimension 56 over Fq (first time?)
Trivial distinguisher
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Zero-difference cryptanalysis of AES Zero differences and exchange operations in SPNs

The zero difference pattern

Definition (Zero difference pattern)

Let ↵ = (↵
0

,↵
1

, . . . ,↵n�1

) 2 Fn
q. Define

⌫(↵) = (z
0

, z
1

, . . . , zn�1

) 2 Fn
2

where

zi =

(
1 if ↵i is zero,
0 otherwise.
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Setting

Let ↵ = (↵
0

,↵
1

, . . . ,↵n�1

) 2 Fn
q denote the state of a block

cipher.
Let q = 2k and let s be a kxk permutation s-box.
The S-box working on a state is defined by

S(↵) = (s(↵
0

), s(↵
1

), . . . , s(↵n�1

))

Let L be a linear layer in the block cipher
We consider a substitution permutation networn (SPN) of the
form S � L � S � L � S .
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The S-box

Lemma
For two states ↵ and � in Fn

q, the zero difference pattern is

preserved by a permutation S-box

⌫(↵� �) = ⌫(S(↵)� S(�)).

Proof.
Follows since ↵i � �i = 0 iff s(↵i )� s(�i ) = 0 and thus the S-box
preserves the zero difference pattern.
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The exchange operation

Definition
For a vector c 2 Fn

2

and a pair of states ↵,� 2 Fn
q define a new

state ⇢c(↵,�) by

⇢c(↵,�)i =

(
↵i if ci = 1,
�i if ci = 0.

Example

Let c = (0110) and ↵ = (↵
0

,↵
1

,↵
2

,↵
3

) and � = (�
0

,�
1

,�
2

,�
3

).
Then

↵
0
= ⇢(0110)(↵,�) = (�

0

,↵
1

,↵
2

,�
3

)
and

�
0
= ⇢(0110)(�,↵) = (↵

0

,�
1

,�
2

,↵
3

)
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Properties of the exchange operation (I)

Lemma
a) ⇢c(↵,�)i � ⇢c(�,↵)i = ↵� �

b) S(⇢c(↵,�))� S(⇢c(�,↵)) = S(↵)� S(�)

c) ⇢c(S(↵), S(�)) = S(⇢c(↵,�))

Proof.

a)

⇢c(↵,�)� ⇢c(�,↵) =

(
↵i � �i if ci = 1,

�i � ↵i if ci = 0

b)

s(⇢c(↵,�))� s(⇢c(�,↵)) =

(
s(↵i )� s(�i ) if ci = 1,

s(�i )� s(↵i ) if ci = 0

.

c)

⇢c(S(↵), S(�)) = S(⇢c(↵,�)) =

(
s(↵i ) if ci = 1,

s(�i ) if ci = 0

.
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Properties of the exchange operation (II)

Lemma
Let L be a linear transformation. Then

L(⇢c(↵,�))� L(⇢c(�,↵)) = L(↵)� L(�)

Proof.
Lemma 2a) gives

⇢c(↵,�)� ⇢c(�,↵) = ↵� �
and the result follows from the linearity of L.
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Properties of the zero-difference pattern

Let ⌫(↵) denote the zero difference pattern of
↵ = (↵

0

,↵
1

, . . . ,↵n�1

).

Lemma
a) ⌫(↵� �) = ⌫(S(↵)� S(�))

b) ⌫(S(L(↵))� S(L(�))) = ⌫(S(L(⇢c(↵,�)))� S(L(⇢c(�,↵))))

Proof.

a) Since S is a permutation

(↵i � �i ) = 0 iff s(↵i )� s(�i ) = 0

b) Since Lemma 3 implies

L(⇢c(↵,�))� L(⇢c(�,↵)) = L(↵)� L(�)
then

(S(L(↵))� S(L(�)))i = 0 iff (L(↵)� L(�))i = 0

iff (L(⇢c(↵,�))� L(⇢c(�,↵)))i = 0

iff (S(L(⇢c(↵,�)))� S(L(⇢c(�,↵)))i = 0
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The Zero-differences and the exchange operation

Theorem

Let ↵
0
= ⇢c(↵,�) and �

0
= ⇢c(�,↵), then

⌫(S(L(S(↵)))� S(L(S(�)))) = ⌫(S(L(S(↵
0
)))� S(L(S(�

0
))))

Proof.

↵ � � = ⇢c(↵,�) � ⇢c(�,↵)
+ S + = + S +

S(↵) � S(�) = S(⇢c(↵,�)) � S(⇢c(�,↵))
+ L + = + L +

L(S(↵)) � L(S(�)) = L(S(⇢c(↵,�))) � L(S(⇢c(�,↵)))
+ S + + S +

S(L(S(↵)) � S(L(S(�))) S(L(S(⇢c(↵,�)))) � S(L(S(⇢c(�,↵))))
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Three Rounds of AES
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Figure: Three rounds SB �MC � SR � S = Q � S

R

3 = (AK�MC�SR�SB)�(AK�MC�SR�SB)�(AK�MC�SR�SB).

Rewrite in terms of
S = MC � SB �MC

L = SR �MC � SR

R

⇤3 = (SB �MC � SR) � (SB �MC � SB) = Q � S
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Three Round AES Distinguisher

Theorem
Three rounds of AES can be distinguished from a random cipher

using one pair of chosen plaintexts and one (adaptively) chosen

ciphertext.
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MC � SB
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MC � SB

S

�1

SR

�1

(MC � SB)�1

⌫c(c0, c1) = v

1
Select p0 � p1

that differ in only

one word

2
ask for encryption c0

and c1
of p0

and p1

3
Let Hi be the image of the ith

column of SR(S(p0)� S(p1))
under MC � SB

4
select v = (v0, v1, v2, v3) where

vi 2 {c0
i , c

1
i }

5
ask for decryption (denote u) of v

6
Then ⌫(p0 � p1) = ⌫(u � pj ) since

the ith component of v is in Hi

Probability 2�96 for random.
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Four Rounds of AES
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Figure: S � L � S in AES
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Four Round AES Distinguisher

Theorem
Four rounds of AES can be distinguished from a random cipher

using one pair of chosen plaintexts and one (adaptively) chosen

ciphertext pair.
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that differ in only
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2
ask for encryption c0

and c1
of p0

and p1

3
construct

v0 = ⇢c (c0, c1), v1 = ⇢c (c1, c0)

4
get plaintexts u0, u1

.

5
if AES, then same zero difference

pattern (prob for random = 2

96
)

Extends to 5-round distinguisher

and key-recovery.
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6 Round AES as S � L � S � L � S

6 rounds AES is
S � L � S � LS
preserve zero differences in
middle
combine with impossible
differential property
first distinguisher for 6
rounds (high complexity)
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Figure: Six Rounds AES
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Conclusion

new records 3-6 round distinguishers AES
new record 5 round key recovery
can be applied directly to similar designs as well
can be improved (more rounds) for lightweight designs
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Conclusion

Thank you!
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Exchange operation and S � L � S � L � S ciphers

Theorem
Let

p

00 = ⇢c(p0, p1) p10 = ⇢c(p1, p0)

c
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